Using Sensorwebs to Monitor Ecosystems —
Integrating sensing, tracking, and modeling
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Adaptive Sensing and Sensorwebs

e Adaptive Sensing offers the potential to revolutionize
environmental sensing

— Sensing optimization based on model uncertainty
— Event-driven selective sensing
— Integrated hierarchical sensing

 These techniques rely on Machine Learning,
Automated Planning, and Multi-agent Systems

My focus in this talk will be on sensorwebs that
utilize remote sensing but the approaches and
techniques apply to many platforms and modalities




Cryosphere Tracking

Hyperion Sensor on EO-1
Ice breakup at Prudhoe Bay

SSMIS sensor on DMSP 30m/pixel resolution
1 days data 25km/pixel resolution




MODIS Rapidfire [Justice et al.]
1km / pixel resolution

Near real time : :
2003 SocCal Fires I I re

NASA/MODIS Land Rapid Response
£

Station fire, La Canada, August 2009

Visible and burn scar enhanced
iImages from ALI instrument on
EO-1 of Station Fire near Los
Angeles 03 September 2009

Images courtesy EO-1 Mission
NASA GSFC




Flood alerts are then used to

retask EO-1. EO-1 Hyperion Image Brahmaputra Aug 6, 2003

resolution :
(10M ALI Pan band possible) 30M resolution




Flooding

e UMD Flood tracking - Myanmar using MODIS
bands 1,2,5,7 (620-2155 nm)

M. Carroll et al.
UMD

Flooding in Burma as detected with MODIS

data from May 5, 2008. Note areas obscured
by clouds not included in this depiction.

B Indicates flooding

Background image is from the MODIS Vegetation
Continuous Fields Percent Tree Cover product.

0% B 100%




Land Information System?

A high-resolution land surface modeling and data assimilation system that supports land
surface research activities and applications.
C. Peters-Lidard / NASA GSFC P. Houser, George Mason University
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LIS Science and Data Flow
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ASE + LIS
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ASE + LIS Track Environment
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Projected increase in capabilities

SWE OSSE Data For 6km? Frasier Area

5010-meter

Microwave-Scale MODIS-Scale Process-Scale

With

Now - ASE + LIS

Houser, ASE-LIS, Pg 11




Volcano Monitoring

e \Volcanoes can erupt with little warning,
sometimes after 100s of years or dormancy

Chaiten volcano,
Chile in a 2008
eruption

Image courtesy
USGS




Hyperion SWIR image of active vent and flows

Hyperion VIS  Classifier output Nyamuragira
4 Dec 2006
07:59 UT

Davies, A. G. et al., 2008, Proc. IEEE-AC
Scott, M. (2008) Earth Imag. J., 5, no 2, 26-29.




Nyamuragira
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NSTCO7 19 June 2007




15 April 2010, MODIS, NASA/GSFC/JPL




MISR, AIRS

B Eyjafiallajskul
Volcano

April 18, 2010

Height (m)

19 April 2010, MISR
NASA/GSFC/LaRC/JPL, MISR Team 15 April 2010, AIRS - NASA/JPL




Space Monitoring and Sensorwebs

EO-1 ALI false color \-‘° #17
imagery of Eyafallajokull *f’» ;“' o,
and Fimmvorduhals ig;‘ % vg, b

volcanoes acquired via ir’ .-J* AT ™
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Volcano Sensorweb. ,ﬁﬁfa
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2 4 Fimmvorduhals

Image courtesy EO- ;--
1/NASA GSFC Volcano
Sensorweb JPL/A.
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lceland
lmagery

Eyafallajokull

2 Giga Watt Thermal
emission

Left — thermal false color
Right — True color

17 April 2010

Image credit:
NASA/JPL/EO-1
Mission/GSFC/Volcano
Sensorweb/Ashley
Davies
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Seene : 2130152010033110KF, Total Flux: 6290.03

1500

Blackbody Fit for Pizel 40, Line 142, Sample 1935 : Termperature 884 35 Kelvin
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Seene | 2180520100331 10KF, Total Fux: 658003

Blackhody Fit for Fixel 40, Line 142, Sample 1935 : Temperature 534 .35 Kelvin

Fit Radiarnce Curve

Parameters:

Mass Effusion rate: 6590.03 kg/s
Volumetric Effusion rate: 2.64 m3/s
Total Power loss: 1.98e+09 W
Radiative Power loss: 1.61e+09 W
Convective Power loss: 3.66e+08 W
Total effective area : 7.98e+04 m?2
Effective temperature: 7.73e+02 K
Look Angle: 12.63 deg.
Range to Ground:  705.85 km
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Thermal emission estimate is minimum value:

- estimates from short wavelength data

- thermal detections heavily impacted by cloud and/or plume...

... and we would like to know by how much!
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Disease Vector Estimation
AUGUST 26, 2008
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Disease Estimation

Predicting Malaria in KENYA
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Heritage (Ground)

e Disease risk estimation via species
identification

Preferred plants for
Anopheles (in order of
preference

W T.stans ,S.didymobotrya
WR.communis

UH.patens

W Taraxacum officinale
Hieracium pratense

Least preferred plants
L. camara
Viola sororia

Roytman, Goldberg, and Mandl




Advanced computation for
Environmental Monitoring

 Machine learning for automatic classification and
interpretation of imagery

 Automated planning & scheduling for asset
autonomy

— Enabled S1M US in operations savings for EO-1 [Chien et
al. 2005 JACIC], co-winner NASA Software of the Year 2005

— Enabled 40% increase in observations [Chien et al. 2010
ICAPS] (Best applied paper award)

 Multi-agent systems for coordination of multiple
assets




Cryosphere Classifier
Deadhorse (Prudhoe Bay), Alaska

& 27 Jun 04

o

29 Feb 04 ) 20 Jun 04

Snow on

Sea lce

Water

'Lce ) Wavelengths used in classifier:
an

Arizona State University
Unclassified 0.43, 0.56, 0.66, 0.86 and 1.65 um

Planetary Geology Group




Land, Ice, Water, Show Detection

Lake Mendota, Wisconsin

Primary Purpose

— Identify areas of land cover (land, ice,
water, snow) in a scene

e Three algorithms:
— Scientist manually derived
— Automatic best ratio
— Support Vector Machine (SVM)

Expert | Automated
Derived Ratio

45.7% 43.7%

60.1% 34.3%

93.6% 94.7%

63.5% 90.4%

84.2% 74.3%

45.7%

Visible Expert Expert Automated SVM
Image Labeled Derived Ratio

R. Castano et al. KDD 2005




. -
Q
)
=
-
)
Q.
@
_
-
O
e
(O
S

if

SAR Class




SVM SAR Classification:
HowlInd 34701 09056 009 090807 LOSOHHVV_CX_01.grd.AutoOa

progress: 100000 / 250000 0.4
Accuracy: 57735 / 100000 (57.73)
progress: 200000 / 250000 0.8
Accuracy: 50717 / 100000 (50.72)
progress: 300000 / 250000 1.2
=== Testing class 2000 vs 1000
=== Testing class 5000 vs 2000
=== Testing class 5000 vs 1000
=== Testing class 5000 vs 3000
=== Testing class 3000 vs 2000
=== Testing class 3000 vs 1000
Accuracy: 27623 / 50000 (55.25)
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Overview

e Sensorweb

— Networked set of sensors

— Data from one sensor is used to refigure other parts of
network

— In space context — data from one or more instruments is
used to retask another asset

— Automated data processing (workflows) may also develop
products and deliver to end users




Agent-based architecture

e System is comprised of a set of agents

e Agents are described by beliefs, desires,
intentions (BDI)

 Agents communicate by sending beliefs,
request for services, acknowledgements of
services, ...




Inside an Agent

e Agents have internal mechanisms to support
goal-directed behavior, such as

e A space asset might have a mission planner to
determine if the spacecraft can satisfy requests for
imaging (or if higher priority activities prevent, or if
resources are not available, etc.)

e An asset might have an execution system to achieve

high level requests (such as imaging, or to reconfigure a
ground network)




Inside an “agent” - ASE

Observation

Planner _
) Band Extraction
Overflight

Times " )
o Observation Image
: \ 4

- CASPER Planner Onboard Science

Raw InstruTent Data
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«
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< High level *. Plans of Activities
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< Information kY
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S/C State Commands
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EO 1 Conventional Flight Software
reflexive response

Control Signals

Sensor Telemetry (very low level)

Spacecraft Hardware




Mount Saint Helens In-situ
Network

e Collaboration between

— Washington State University (node SW, node
networking, node quality of service SW)

— US Geological Survey, Cascade Volcano
Observatory (HW design and fabrication, volcano
experts)

— JPL (autonomy, C&C, space component,
volcanology)




Spider Sensors Hardware (USGS)

MEMS accelerometer (seismographic)
Acoustic Sensor

GPS sensor

Lightning Sensor

Radio




Spider Node on Mt St Helens




Spider Node on Mt St Helens




Mount Saint Helens “Agent”
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Onboard Node Smart Software

 Onboard node software can detect events to change operating modes to

capture critical events

» Quality of Service Node software ensures highest priority data is tranferred
« Example from OASIS Node 05 showing waveform, in-situ RSAM and in-situ
event triggered QOS prioritization
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(...continued) Results of Space Trigger End-to-End Test

Data autonomously delivered to Ground System and ingested into time-series DB.
VAlarm detects new data and triggers autonomous ground response through C&C:
heighten priority (QoS) of crater node (node 4) seismic data.

Thermal data detected / ground response

Data transmission loss at low QoS. . .
Q Increased QoS results in nearly continuous data,

at node of interest.




Undersea - Planning & Prosecution
NSF/OO!

Plans or
commands to
control SW

Data &
event
notices

3.3.7 Mission Simulator
MIT Marine Autonomous Systems Laboratory

Jet Propulsion Laboratory/ Artificial intelligence Group
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Conclusions

e Adaptive sensing is revolutionizing
environmental monitoring — cryosphere,
flooding, volcanology,

— Adaptive sensing integrated with modeling

— Machine learning for data interpretation

— Automated Planning/Execution for asset autonomy
— Multi-agent systems for coordination




