
Appears in AIPS 2000 1

Challenges and Methods in Testing the Remote Agent Planner

Ben Smith
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

benjamin.smith@jpl.nasa.gov

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

martin.s.feather@jpl.nasa.gov

Nicola Muscettola
NASA Ames Research Center

MS 269-2
Moffet Field, CA 94035
mus@ptolemy.arc.nasa.gov

Abstract

The Remote Agent Experiment (RAX) on the Deep
Space 1 (DS1) mission was the first time that an arti-
ficially intelligent agent controlled a NASA spacecraft.
One of the key components of the remote agent is an
on-board planner. Since there was no opportunity for
human intervention between plan generation and ex-
ecution, extensive testing was required to ensure that
the planner would not endanger the spacecraft by pro-
ducing an incorrect plan, or by not producing a plan
at all.

The testing process raised many challenging issues, sev-
eral of which remain open. The planner and domain
model are complex, with billions of possible inputs and
outputs. How does one obtain adequate coverage with
a reasonable number of test cases? How does one even
measure coverage for a planner? How does one deter-
mine plan correctness? Other issues arise from devel-
oping a planner in the context of a larger operations-
oriented project, such as limited workforce and chang-
ing domain models, interfaces and requirements. As
planning systems are fielded in mission-critical appli-
cations, it becomes increasingly important to address
these issues.

This paper describes the major issues that we encoun-
tered while testing the Remote Agent planner, how we
addressed them, and what issues remain open.

Introduction
As planning systems are fielded in operational environ-
ments, especially mission-critical ones such as space-
craft commanding, validation of those systems becomes
increasingly important. Verification and validation of
mission-critical systems is an area of much research and
practice, but little of that is applicable to planning sys-
tems.
Our experience in validating the Remote Agent plan-
ner for operations on board DS1 raised a number of key
issues, some of which we have addressed and many of
which remain open. The purpose of this paper is to
share those experiences and methods with the planning
community at large, and to highlight important areas
for future research.

Copyright c© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

At the highest level there are two ways that a planner
can fail. It can fail to generate a plan within stated time
bounds1 (converge), or it can generate an incorrect plan.
Plans are correct if they command the spacecraft in a
manner that is consistent with accepted requirements.
If the domain model entails the requirements, and the
planner enforces the model, then the plans will be cor-
rect. One must also validate the requirements them-
selves to be sure they are complete and correct.
Ideally we would prove that the domain model en-
tails the requirements: that is, prove that the model
will always (never) generate plans in which particular
conditions hold. This may be possible for some require-
ments, but is almost certainly undecidable in general.
A more practicable approach, and the one we used for
RAX, is empirical testing. We first had spacecraft engi-
neers review the English requirements for completeness
and accuracy. We then generated several plans from
the model and developed an automated test oracle to
determine whether they satisfied the requirements as
expressed in first order predicate logic. A second (triv-
ial) oracle checked for convergence. If all of the test
cases converge, and the test cases are a representative
sample of the possible output plans (i.e., have good cov-
erage), then we have high confidence that the planner
will generate correct plans for all inputs.
The key issue in empirical testing is obtaining ade-
quate coverage (confidence) within the available testing
resources. This requires a combination of strong test se-
lection methods that maximize the coverage for a given
number of cases, and strong automation methods that
reduce the per-test cost. Complex systems such as plan-
ners can potentially require huge numbers of test cases
with correspondingly high testing costs, so this issue is
particularly critical for planners.
We developed a number of test automation tools, but
it still required six work-weeks to run and analyze 289
cases. This high per-test cost was largely due to human
bottlenecks in analyzing results and modifying the test

1Since the search space is exponential there will always
be inputs for which a plan exists but cannot be found within
the time limit. Testing needs to show that the planner will
converge for all of the most likely inputs and a high propor-
tion of the remaining ones.



Appears in AIPS 2000 2

cases and automations in response to domain model
changes. This paper identifies the bottlenecks and sug-
gests some ways of eliminating them.
With only 289 cases it was impossible to test the
planner as broadly as we would have liked. To keep
the test suite manageable we focused the test effort on
the baseline goal set most likely to be used in oper-
ation. This strategy yields high confidence in inputs
around the baseline but very low confidence in other
goal sets. This risk is appropriate when there is a base-
line scenario that changes slowly and becomes fixed in
advance of operations, as is common in space missions.
Late changes to the baseline could uncover new bugs at
a stage where there is insufficient time to fix them.
This risk could be reduced with formal coverage met-
rics. Such metrics can identify coverage gaps. Even if
there are insufficient test resources to plug those gaps
the tester can at least address the most critical gaps
with a few key tests, or inform the project manager as
to which inputs to avoid. Coverage metrics also enable
the tester to maximize the coverage of a fixed number
of tests.
To our knowledge no such metrics exist for planning
systems and we did not have time to develop one of our
own for testing RAX. Instead we selected cases accord-
ing to an informal coverage metric. Since test adequacy
could only be assessed subjectively we used more cases
than were probably necessary in order to reduce the risk
of coverage gaps. Formal coverage metrics for planning
systems are sorely needed to provide objective risk as-
sessments and to maximize coverage.
The rest of this paper is organized as follows. We
first describe the RAX planner and domain model. We
then discuss the test case selection strategy, the effec-
tiveness of that strategy, and the opportunities for fu-
ture research into coverage metrics and test selection
strategies. We then discuss the test automations we
employed, the demands for human involvement that
limited their effectiveness, and suggest automations and
process improvements that could mitigate these factors.
We conclude with an evaluation of the overall effective-
ness of the Remote Agent planner testing, and summa-
rize the most important open issues for planner testing
in general.

RAX Planner
The Remote Agent planner (Muscettola et al. 1997) is
one of four components of the Remote Agent (Nayak et
al. 1999; Bernard et al. 1998). The other components
are the Executive (EXEC) (Pell et al. 1997), Mission
Manager (MM), and Mode Identification and Reconfig-
uration (MIR) (Williams & Nayak 1996).
When the Remote Agent is given a “start” command
the EXEC puts the spacecraft in a special idle state, in
which it can remain indefinitely without harming the
spacecraft, and requests a plan. The request consists of
the desired plan start time and the current state of the
spacecraft. The desired start time is the current time
plus the amount of time allocated for generating a plan

(as determined by a parameter, and typically between
one and four hours).
The Mission Manager extracts goals from the mission
profile, which contains all the goals for the experiment
and spans several plan horizons. A special waypoint
goal marks the end of each horizon. The MM extracts
goals between the required start time and the next way-
point goal in the profile. These are combined with the
initial state. The MM invokes the planner with this
combined initial state and the requested plan start time.
The planner expands the initial state into a conflict-
free plan using a heuristic chronological backtracking
search. During the search the planner obtains addi-
tional inputs from two on-board software modules, the
navigator (NAV) and the attitude control subsystem
(ACS). These are also referred to as “plan experts.”
When the planner decides to decompose certain nav-
igation goal into subgoals, it invokes a NAV function
that returns the subgoals as a function of the goal pa-
rameters. The planner queries ACS for the duration
and legality of turn activities as a function of the turn
start time and end-points.
The fundamental plan unit is a token. These can rep-
resent goals, activities, spacecraft states, and resources.
Each token has a start and end timepoint and zero or
more arguments. The tokens exist on parallel timelines,
which describe the temporal evolution of some state or
resource, or the activities and goals related to a partic-
ular state. Some RAX timelines are attitude, camera
mode, and power. The domain model defines the token
types and the temporal and parameter constraints that
must hold among them.

Nominal Execution. If the planner generates a plan
the EXEC executes it. Under nominal conditions the
plan is executed successfully and the EXEC requests a
new plan. This plan starts at the end of the current
plan, which is also the start of the next waypoint in the
profile.

Off-nominal Execution. If a fault occurs during ex-
ecution, and the EXEC cannot recover from it, it termi-
nates the plan and achieves an idle state. This removes
the immediate threat of the fault. Depending on the
failure, it may only be able to achieve a degraded idle
state (e.g., the camera switch is stuck in the off posi-
tion). It then requests a new plan that achieves the
remaining goals from the achieved idle state. As with
other requests, the required start time is the current
time plus the time allowed for planning.

RAX DS1 Domain Model. The domain model en-
codes the knowledge for commanding a subset of the
DS1 mission known as “active cruise” that consists of
firing the ion propulsion (IPS) engine continuously for
long periods, punctuated every few days by optical nav-
igation (op-nav) images and communication activities.



Appears in AIPS 2000 3

Goal Type Arguments

waypoint hzn,expt start,expt end
navigate frequency (int), duration (int).

slack (int)
Comm none
power estimate amount (0-2500)
exec activity type, file, int, int, bool
sep segment vector (int), level (0-15)
max thrust duration (0-inf)
image goal target (int), exposures (0-20),

exp. duration (0-15)

Table 1: Goals

state timeline initial values

exec activity 0,1,2
attitude Earth, image, thrust vector
micas switch ready, off
micas healthy true, false

Table 2: Variable Initial State Timelines

The goals defined by the domain model are shown
in Table 1. The initial state consists of an initial to-
ken for each of the timelines in the model. The legal
start tokens for most timelines are fixed. Table 2 shows
the non-fixed timelines and the set of legal start to-
kens for each one. Finally, the domain model defines 11
executable activities for commanding the IPS engine
and MICAS camera, slewing (turning) the spacecraft,
and injecting simulated faults. The latter allow RAX
to demonstrate fault recovery capabilities, since actual
faults were unlikely to occur during the experiment.

Test Selection Strategy
The key test selection issue is achieving adequate cov-
erage with a manageable number of cases. Test selec-
tion should ideally be guided by a coverage metric in
order to ensure test adequacy. Coverage metrics gen-
erally identify equivalence classes of inputs that result
in qualitatively similar behavior with respect to the re-
quirement being verified. A set of tests has full coverage
with respect to the metric if it exercises the test artifact
on one input from each class.
The verification and validation literature is full of
coverage metrics for mission-critical systems (e.g., code
coverage), but to our knowledge there are no coverage
metrics specifically suited to planning systems. The
most relevant metrics are those for verifying expert
system rule bases. The idea is to backward chain
through the rule base to identify inputs that would re-
sult in qualitatively different diagnoses (e.g., (O’Keefe
& O’Leary 1993)). Planners have more complex search
engines with correspondingly complex mappings, and a
much richer input/output space. It is unclear how to in-
vert that mapping in a way that produces a reasonable
number of cases.

Since we did not have a planner-specific coverage
metric for RAX, we instead used a black-box approach
that has been successful in several conventional sys-
tems. The idea is to characterize the inputs as an
n-dimensional parameter space and use orthogonal ar-
rays (Cohen et al. 1996) to select a manageable num-
ber of cases that exercises all pair-wise combinations
of parameter values. These tests can be augmented as
needed with selected higher-order combinations. Since
the number of pair-wise cases is logarithmic in the num-
ber of parameters, systems with eighty or more pa-
rameters can be tested with just a few hundred test
cases. Specifically, the number of cases is proportional
to (v/2) log2 k for k parameters, each with v values (Co-
hen et al. 1997).
One disadvantage of this all-pairs selection strategy
is that each test case differs from the others and from
the nominal baseline input in several parameter values.
That often made it difficult to determine why a test case
failed, especially when the planner failed to converge.
To address this problem we created a second test set
in which each case differed in only one parameter value
from the nominal baseline, which was known to pro-
duce a valid plan. This “all-values” test set exercised
each parameter value at least once. If one of these cases
failed, it was obviously due to the single changed param-
eter. Its similarity to the baseline case made it easier
to identify the causal defect. Analysis of failed all-pairs
cases was simplified by initially diagnosing them with
the same causal defects as failed all-values cases with
which they shared a parameter value. Further diagno-
sis was undertaken only if the all-pairs case still failed
after fixing the bug.
The reduction in analysis cost comes at the expense
of additional test cases. The all-values test set grows
linearly in the number of parameter values. Specifically,
there are 1+Σni=1(vi− 1) cases for n parameters where
parameter i has vi values.

RAX Test Selection

We now discuss how the all-pairs and all-values test
selection strategies were employed for RAX. The plan-
ner has the following inputs: a set of goals, which are
specified in a mission profile and by the on-board navi-
gator; an initial state; a plan start time; slew durations
as provided by the ACS plan expert; and two plan-
ner parameters—a seed for the pseudo-random number
generator that selects among non-deterministic choices
in the search, and “exec latency” which controls the
minimum duration of executable activities.
Each of these inputs is specified as a vector of one or
more parameter values. The goals and initial states are
specified by several parameters, and the other inputs
are specified by a single parameter each. Several of the
parameters, such as plan start time, have infinite or
very large domains. It is clearly infeasible to test all
of these values, so we selected a small subset that we
expected to lie at key boundary points. This selection
was ad hoc based on the intuition of a test engineer



Appears in AIPS 2000 4

id Parameter Values Tested Range

1 experiment start 3 integer
2 plan start 10 integer
3 profile 12h, 6day, 2day same
4 random seed 3 seeds integer
5 exec latency 1, 4, 10 0-10
6 micas switch off, ready same
7 micas healthy true, false same
8 micas healthy true, false, n/a same

(prior plan)
9 attitude SEP, Image, same

Earth
10 end last thrust -2d, -1d, -6h integer
11 end last window -2d, -1d, 0 integer
12 window duration 1,2,3,4,6 hours integer
13 window start 0, 1, 2, 4 integer
14 targets/window 2, 20 0-20
15 images/target 3, 4, 5 3-5
16 image duration 1, 8, 16 1-16
17 SEP goals 6 configurations infinite
18 SEP thrust level 6, 12, 14 15
19 SPE 1500,2400,2500 2500
20 slew duration 30, 120, 300, 30-

400, 600, 1200 1200

Table 3: Tested Parameters

familiar with the domain model, or simply high, middle,
and low values in the absence of any strong intuition.
Table 3 shows the full list of parameters, the range of
values each can take, and the subset of those values
tested.

The initial state input consists of one token for each
of the initial state timelines, with the exception of the
MICAS health timeline which can initially have two
adjacent tokens if the health changed while executing
the prior plan. Parameters 6-9 specify the initial tokens
and arguments for each of the non-fixed timelines shown
in Table 2 . The initial tokens can start at or before
the plan start. With the exception of the SEP and
navigation window timelines the start times have no
impact on planning and are set to the plan start for
testing. Parameters 10 and 11 control the start times
of the two exceptional tokens.

There are two goal inputs: the mission profile and the
goals requested by the onboard navigator. The naviga-
tor goals specify the IPS thrusting it needs to achieved
the desired trajectory, and the asteroid images it needs
to determine the spacecraft position along that trajec-
tory. This input is specified by Parameters 14-18.

The mission profile input is specified by Parameters
12, 13, and 19. These generate mutations of the two
baseline mission profiles that we expected to use in
operations: a 12 hour confidence-building profile that
contained a single optical navigation goal and no IPS
thrusting goals, and a six day primary profile that con-
tained all of the goal types in Table 1. The mutations

Constraint Sets
(required values)

id Parameter 1 2 3

2 plan start 0 6= 3 days 3 days
3 profile 12-hr 6-day 6-day
8 micas healthy none none *

(prior plan)
9 attitude Earth Earth *
10 end prior thrust 0 0 *
11 end prior window 0 0 *
17 SEP goals null goal * *
18 SEP thrust level 0 * *

Table 4: Constraint Sets

were designed to cover possible changes to the least
stable elements of the profiles. Since the profiles are
finalized prior to operations, and we had control over
their contents, focusing on mutations of these profiles
seemed a reasonable strategy. As it turned out, for op-
erational reasons out of our control the profile had to
be changed radically at the last minute. We reduced
the horizon from six days to two, deleted five goals and
changed the parameters and absolute (but not relative)
placement of others. The goal types and overall profile
structure remained the same. Fortunately, no new bugs
were exposed by the new profiles since there would have
been little time to fix them. Testing a broader range
of profiles would have mitigated that risk. Broader test
strategies are discussed in the next section.

The final input, specified by Parameter 20, is the
duration of spacecraft slews (turns) computed by the
attitude control planning expert (APE). The planner
invokes APE to determine the duration of each slew
activity as a function of the turn end-points and the
spacecraft position at the start of the turn. Since posi-
tion over time (trajectory) is not known until flight, we
had to test the range of possible slew durations.

RAX operational requirements imposed three con-
straints among the parameter values as shown in Ta-
ble 4. The test generator considered these constraints
to avoid generating impossible cases. Constraint set one
enforces the operational requirement that plans gener-
ated from the 12 hour profile will never have SEP goals,
will start at the horizon start, and will have one of
the four RAX idle states as the initial state. The sec-
ond and third constraints enforce the following require-
ment. The plan start time is always one of the horizon
boundaries (horizon waypoint goals) except when the
exec requests a replan after a plan failure. In that case
the exec first achieves one of the four RAX idle states,
which becomes the initial state for the replan. So if
the plan start is not a horizon boundary, constraint set
two restricts the initial state parameters to the four idle
states. When the plan start is at the horizon boundary
for the six-day plan, all initial states are possible. This
situation is reflected by the third constraint set.



Appears in AIPS 2000 5

1 2 3 Total

all-pairs 24 61 41 126
all-values 23 51 45 119

Table 5: Test Set Sizes

The all-pairs and all-values test cases were generated
automatically from the parameters and constraints de-
scribed above. The constraints were satisfied by gen-
erating one test set for each constraint set. The sizes
of the resulting test sets are shown in Table 5. These
were augmented by 22 cases to exercise the planner in-
terfaces.

Test Effectiveness

The selected tests were ultimately successful in that the
on-board planner exhibited no faults during the exper-
iment, and the tests provided the DS1 flight managers
with enough confidence to approve RAX for execution
on DS1. However we still have no objective measure of
the delivered reliability. It seems likely that there were
a number of coverage gaps, though again we have no
way to measure that objectively. This section makes
some informed guesses as to where those gaps might be
and suggests some ways of addressing them.

Effectiveness metrics needed. Objective metrics
are needed to evaluate new and existing test strate-
gies. Defect coverage can only be estimated since the
actual number of defects is unknowable. One method
is to inject faults according to the estimated defect dis-
tribution for a system and evaluate how well different
test strategies detect them. Another possibility is to
evaluate test selection strategies against various plan-
ner coverage metrics. This assumes higher test coverage
is correlated with higher defect coverage, which is not
necessarily true. Empirical data from several planning
applications would be needed to confirm the correlation.

Value selection was ad hoc. Many parameters had
large or infinite domains, and so only a few of those
could be tested. That selection was ad hoc, based pri-
marily on the tester’s intuition. This undoubtedly left
coverage gaps. One way to close the gap is to select
values more intelligently based on a coverage metric.
The metric would partition the values into equivalence
classes that would exercise the domain model in qual-
itatively different ways. This would ensure adequate
coverage while minimizing the number of values per pa-
rameter, and therefore minimizing the number of test
cases.
For example, one bug detected serendipitously during
integration depended upon the specific values of three
continuous parameters: the time to start up the IPS
engine, the time to the next optical navigation window,
and the duration of the turn from the IPS attitude

bugs found pairs all pairs other
- values values + values

convergence 12 20 32 1
correctness 5 37 42 9
interface 3 25 28 24
engine 5 22 27 30
total 25 104 129 64

Table 6: Defect Coverage by Test Type

to the first asteroid. An equation relating these pa-
rameters can crisply identify the boundary values that
should be exercised. Value selection based solely on the
tester’s intuition is likely to miss many such interac-
tions. Some possible metrics are discussed below.

Was all-pairs testing sufficient? All pairs testing
will detect any bug exercised by one or two parameter
values, but only some bugs exercised by interactions of
three or more parameters. For example, the IPS bug
discussed above was an interaction among three param-
eter values and was not detected by all-pairs testing. An
open question is whether or not these bugs represent a
significant fraction of the total defects. Assuming they
are significant, the next open question is how to detect
them with a manageable number of test cases.
Table 6 shows the defects detected by the all-pairs,
all-values, and other tests. The other tests include a
set of 22 interface tests and bugs discovered incidentally
during development. The all-pairs and all-values tests
detected 88% of the correctness and convergence bugs,
but only half of the interface and engine bugs. This
data also show that all-pairs testing detects only 20%
more bugs than all-values testing alone. One reason
for this sub-linear increase may be that many defects
are exercised by many parameter value combinations,
so that testing all values will find them. The table
also shows that all-values misses more convergence bugs
than correctness bugs with respect to all-pairs. This
might be because convergence bugs are often caused by
interactions among several domain constraints and are
therefore less likely to be exercised by a single value.
These results suggest that defect detection increases
sub-linearly with the number, m, of parameter com-
binations tested. That is, all-pairs detects fewer new
bugs than all-values, and all-triples detects even fewer
new bugs. The point of diminishing returns is probably
reached at some small value of m. An effective strategy
might therefore be to test m-wise combinations of pa-
rameter values and augment these with a few carefully
selected higher order combinations. The test set should
still be tractable for small m since the number of cases
is proportional to (v/2) logm k for k parameters with v
values each. Selection of additional cases would have
to be guided by a coverage metric based in turn on a
formal analysis of the domain model. Tester intuition
is probably insufficient, as evidenced in value selection.



Appears in AIPS 2000 6

Constraint Set
1 2 3 Total

all-pairs, v = 3 43 65 67 175
all-pairs, v = 5 103 116 118 337
all-values, v = 3 270 303 311 884
all-values, v = 5 526 583 591 1700

Table 7: Test Set Sizes for All Goal-Pairs

A coverage metric could also help select a value for m
that best balanced coverage against number of cases.

Broader goal coverage needed. RAX planner test-
ing focused on mutations of the baseline profile. Bugs
exercised only by other goal sets would not have been
detected. For example, transitioning from the 6 day
scenario to the 2 day scenario compressed the schedule
and eliminated the slack time between activities. This
led to increased backtracking which caused new conver-
gence failures.
Exercising the full goal space would eliminate this
coverage gap. It is also necessary for future missions,
which must be confident that any goal set (profile) they
provide will produce a valid plan. The challenge is how
to provide this coverage with a manageable number of
test cases.
One possibility is to create parameters that could
specify any mission profile and perform all-pairs testing
on this space. This would require at least one parame-
ter for the start time, end time, and arguments for up
to k instances of each goal type. For k = 3 the RAX
model would require 140 parameters. These would re-
place parameters 12-19 of Table 3. Testing v = 3 values
for each parameter would require 175 cases, and v = 5
values would require 337 cases as shown in Table 7.
This indicates that all-pairs testing of the full goal
space is feasible, and that all-values testing might be
feasible with sufficient test resources. Some additional
issues would still need to be addressed, though these
are relatively straightforward. First, profiles must be
generated automatically from parameter values. There
were only a few profile mutations for RAX so they were
generated manually, but this is infeasible when there
are hundreds of cases.
Second, some parameter vectors specify unachievable
or impossible goal sets that would never occur in prac-
tice. These cases have to be automatically identified
and eliminated to avoid the high analysis cost of dis-
criminating test cases that failed due to impossible goals
from those that failed due to a defect. Determining
whether an arbitrary goal set is illegal is at least as dif-
ficult as planning, but it should be possible to detect
many classes of illegal goals with simpler algorithms
(e.g., eliminate goals that are mutually exclusive with
any one or two domain constraints).
Although all-pairs testing of this parameter space is
feasible, it may or may not be effective. As discussed

above it may be necessary to test every k-wise combina-
tions of parameter values for some small k ≥ 2, and/or
create additional cases to exercise key goal interactions.

Formal Coverage Metrics Needed

Formal coverage metrics are sorely needed for planner
validation. Metrics based on analyses of the domain
model can indicate which parameter values and goal
combinations are likely to exercise the domain model
in qualitatively different ways. Formal metrics can
identify coverage gaps and inform cost-risk assessments
(number of cases vs. coverage).
Formal coverage metrics, such as code coverage, have
been developed for critical systems but to our knowl-
edge no metrics have been developed for measuring cov-
erage of a planner domain model. This is clearly an area
for future research. A few possibilities are discussed be-
low.

Constraint coverage. One possible coverage metric
is the number of domain model constraints exercised.
This is analogous to a code coverage metric. For a given
plan, it determines which constraints it uses, and how
those constraints were instantiated. A good test suite
should exercise each instantiation of each constraint at
least once.

Goal-Interaction coverage. This coveragemetric is
targeted at exercising combinations of strongly interact-
ing goals. Since testing all combinations is intractable,
the idea is to analyze the domain model to determine
how the goals interact, and only test goal combinations
that yield qualitatively different conflicts. For example,
if goals A and B used power, we would test cases where
power is oversubscribed by several A goals, by several
B goals, and by a combination of both goals.. The cov-
erage could be adjusted to balance risk against number
of cases. One could limit the coverage to interactions
above a given strength threshold.
This metric would extend on prior work on de-
tecting goal interactions in planners to improve up
the planning search, such as STATIC (Etzioni 1993),
Alpine (Knoblock 1994) and Universal Plans (Schop-
pers 1987). STATIC generates a problem solving graph
from the constraints and identifies search control rules
for avoiding goal interactions. Alpine identifies interac-
tions to find non-interacting sub-problems, and univer-
sal plans (Schoppers 87) derive reactive control rules
from pair-wise goal interactions. These methods are
designed for STRIPS-like planning systems and would
have to be extended to deal with metric time and aggre-
gate resources, both of which are crucial for spacecraft
applications. One of the authors (Smith) is currently
pursuing research in this area.

Slack metric. Another approach being pursued by
one of us (Muscettola) is to select plan start times by
analyzing the slack in the baseline plans. This approach



Appears in AIPS 2000 7

Task Effort

Update/debug cases, tools 3.0
Run cases and analyzers 0.1
Review analyzer output 1.5
File bug reports 0.5
Close bugs 0.5
Total 5.6

Table 8: Test Effort in Work Weeks by Task

was used to manually select plan start times once the
final baseline was frozen just prior to the experiment.
Using our knowledge of the PS model, we manually
identified boundary times at which the topology of the
plans would change. We identified 25 such boundary
times and generated a total of 88 test cases correspond-
ing to plans starting at, near, or between boundary
times. This led to the discovery of two new bugs. Fur-
thermore, analysis of the test results showed that PS
would fail to find a plan at only 0.5% of all possible
start times.

Test Automation
Automation played a key role in testing the Remote
Agent planner. It was used for generating tests, run-
ning tests, and checking test results for convergence and
plan correctness. Even so, the demand for human in-
volvement was high enough to limit the number of test
cases to just under three hundred per six week test pe-
riod, or an average of ten cases per work-day.
The biggest demand for human involvement was
updating the test cases and infrastructure following
changes to the planner inputs, such as the domain
model and mission profile. The next largest effort was
in analyzing the test results. The test effort by task is
shown in Table 8. This section discusses the automa-
tions that we found effective, the human bottlenecks,
and opportunities for further automation.

Testing Tasks

The Remote Agent software, including the planner, was
released for testing every six to eight weeks. The plan-
ner was exercised on the full set of test cases. A typical
test cycle consisted of the following activities.
The tester updates the set of test cases as required
by any changes to the planner input space. The test
harness is updated to accommodate any new inputs or
interface changes. The harness invokes the planner on
each test case and collects the output. The tester makes
sure that the cases ran properly, and re-runs any that
failed for irrelevant reasons (e.g., the ACS simulator did
not start).
The test results are analyzed by two oracles. The
first checks for convergence, and the second for plan
correctness. The oracles say that a requirement failed,
but not why it failed. The tester reviews the output to
determine the apparent cause and files a bug report.

Finally, the analyst confirms purported bug fixes
from the previous release as reported in the bug-
tracking database. Each bug has one or more support-
ing cases. The analyst determines whether those cases
passed, or whether the bug is still open. In some in-
stances, the tester may have to devise additional tests
to confirm the bug fix.

Test Automation Tools

We employed several test automation tools for validat-
ing the Remote Agent planner, which are summarized
below.

• Test Harness. The harness invokes the planner
with the inputs for a given test case. Since the plan-
ner is embedded in RAX the harness invokes the plan-
ner by hijacking the RAX internal planner interfaces,
which are primarily file and socket based. It converts
the parameter values for each test case to input files:
an initial state file, a planner parameter file (seed
and latency), and a parameter file for the ACS and
NAV simulators. The mission profiles were too diffi-
cult to generate automatically and were constructed
by hand. The remaining inputs are sent over socket
connections. After running the planner it collects the
output, which consists of the plan file (if any), time
spent planning, search trace, the initial state gener-
ated by the mission manager, and the simulator and
harness output.

• Plan Correctness Oracle. The oracle reads a plan
into an assertions database and then verifies that the
assertions satisfy requirements expressed in first or-
der predicate logic (FOPL). This tool (Feather 1998;
Feather & Smith. 1999) was implemented in AP5, a
language that supports these kinds of FOPL opera-
tions.

The oracle also verified that the plan engine enforced
the plan model by automatically converting the do-
main constraints into equivalent FOPL statements
and checking the plan against them. Constraints are
of the form ”if token A exists in the plan, then there
also exists a token B such that the temporal rela-
tion R holds between A and B.” This maps onto an
equivalent FOPL requirement: A→ B ∧R(A,B).

Analysis Costs

The two analysis tasks are determining whether a test
case has failed, and why. The first task was performed
by automated test oracles. A trivial oracle tested for
convergence: if the planner generates a plan within the
time limit the test cases passes, otherwise it fails. Auto-
matically determining plan correctness requires a more
sophisticated oracle. The oracle must measure correct-
ness against some specification. The model is one such
specification, but there is little point in validating the
model against itself. We need a second specification
that can be easily validated by spacecraft experts. We
developed a small set of requirements in first order pred-
icate logic (FOPL) and had spacecraft experts validate



Appears in AIPS 2000 8

their English translations. The automated test ora-
cle determined whether individual plans satisfied those
FOPL statements. This approach is not foolproof: the
requirements may be incomplete, or their English trans-
lations may be incorrect. Methods to deal with these
vulnerabilities are needed.
Once the oracles have identified the failed test cases,
the next analysis task is to determine why they failed.
For each failed test case, the analyst determines the
apparent cause of the failure. Cases with similar causes
are filed as a single bug report. This initial diagnosis
provides guidance for finding the underlying bug, and
is critical for tracking progress. If the analyst simply
stated that the planner failed to generate a plan on the
following fifty test cases, there could be fifty underlying
bugs or just one. The initial diagnoses provide a much
better estimate of the number of outstanding bugs.
Analyzing the test cases took eight to ten work-days
for a typical test cycle and were largely unautomated.
To determine why a plan failed to converge the analyst
looked for excessive backtracking in the search trace or
compared it to traces from similar cases that converged.
Plan correctness failures also required review, although
it was somewhat simpler (2-3 days vs. 8-10) since the
incorrect plan provided context and the oracle identified
the offending plan elements.
Automated diagnosis could reduce these efforts, espe-
cially for determining why the planner failed to gener-
ate a plan. There has been some work in this area that
could be applied or extended. Howe (Howe & Cohen
1995) performed statistical analyses of the planner trace
to identify applications of repair operators to states that
were strongly correlated with failures. Chien (Chien
1998) allowed the planner to generate a plan, when it
was otherwise unable to, by ignoring problematic con-
straints. Analysts were able to diagnose the underlying
problem more quickly in the context of the resulting
plan.
Analysis costs could also be reduced by only running
and analyzing tests that exercise those parts of the do-
main model that have changed since the last release.
One would need to know which parts of the domain
model each test was intended to exercise. This infor-
mation is not currently provided by the all-pairs strat-
egy, but could be provided by a coverage metric: a test
is intended to exercise whatever parts of the model it
covers. A differencing algorithm could then determine
what parts of the model had changed, where the “parts”
are defined by the coverage metric.
This capability would also allow one to assess the
cost of testing proposed model changes. This is an im-
portant factor in deciding how (or even whether) to
fix a bug near delivery, and in assessing which fixes or
changes to include in a release.

Impact of Model and Interface Changes

About half of the test effort in each cycle were the re-
sult of changes to the planner inputs and interfaces,
which includes changes to token definitions in the do-

Version days tokens parameters relations
chg new chg new

009 6 27 34 13
011 6 1 6
015 6 0 1
019 6 0 10 -1
026 6 +8 1 +9 8 +9
029 6 +5 0
FLT 03 6 1 0
FLT 05 2 -12,+3 10 0 15 -7
FLT 07 2 5 7 +2

Table 9: Profile Evolution

main model and changes to the baseline mission profiles.
Modifications to the interfaces necessitated correspond-
ing changes to the test harness, and sometimes to the
input parameter table from which the test cases were
generated. Most of the effort was spent not in making
these changes, which generally took just a day or two,
but in debugging them and identifying undocumented
changes.
Unimplemented or incorrectly implemented changes
resulted in test cases with unintended planner inputs.
These inputs could cause a test case to fail when it
would have succeeded with the intended inputs, or to
succeed when it would have failed. Some of these were
obvious, and detected by dry runs with a few test cases.
Others were more subtle and not detected until the
analysis phase, at which point the cases had to be re-
run and re-analyzed after fixing the harness.
The planner interfaces consisted of the experiment
and plan start times, and files for the initial state, pro-
file, planner parameters (seed and exec latency), and
simulator parameters (for NAV and ACS). One or more
of these changed for every release, sometimes without
notice. The instability of the interfaces was largely due
to the tight development schedule combined with par-
allel development and testing.
The profile and initial state inputs were particularly
mutable as shown in Table 9 and Table 10. These files
are comprised of tokens, and if these token definitions
change in the domain model, these input files must also
change.
This experience indicates that it is preferable to
maintain stable interfaces throughout testing if at all
possible. If interfaces must change, they should do so
infrequently and any decision to change them must con-
sider the test impact. Appropriate software engineering
practices can help minimize interface changes. Automa-
tion can also help reduce the impact of changes when
they do occur. We present a few possibilities below.
The first two were used successfully for RAX.

Private Parameters. To minimize the impact from
token parameter changes, we created the notion of a
private parameter in the domain specification language.



Appears in AIPS 2000 9

Token Type Public Private Version

navigate goal +3 026
op nav window goal +8 026
no op nav goal +4 026
waypoint goal +1 026
no op nav goal +1 027
op nav window goal +1 029
exec goal goal +1 029
sep timer idle init −1 019
SEP standby init +1 019
no activity init +1 029
micas health init +1 029
MICAS ready init −1 029
RCS turn internal +5 019
sep turn internal +1 026
exec activity internal +1 029

Table 10: Token Parameter Changes

These were used when new parameters were added to
propagate values needed by new domain constraints or
heuristics, the most common reason for adding new pa-
rameters to the model. Private parameters do not ap-
pear in the initial state or profile, but are added auto-
matically by the MM. Their values are set automatically
by propagation from other parameters. This reduced
the number of impactful parameter changes from 30 to
10 as shown in Table 10.

Special Test Interfaces. To reduce the impact of
changes to the initial state tokens and the format of
the initial state file, both of which changed frequently,
we negotiated an alternative testing interface to the
initial-state generating function in the EXEC code. The
test harness constructed an initial state by sending ap-
propriate inputs to those functions, which then created
the initial state in the correct format with the correct
tokens. The idea of negotiating stable testing inter-
faces applies to testing complex systems in general, and
should ideally be considered during the design phase.

Automated Input Legality Checks. The effort of
identifying unintended mission profile and initial state
inputs could have been greatly reduced by automat-
ically checking their legality. One could imagine au-
tomating these checks by using an abstraction of the
domain model to determine whether a set of goals are
achievable from the specified initial state.
The debugging effort for other inputs could have been
reduced in a similar fashion. The syntax and seman-
tics of each input file could be formally specified and
automatically verified against that specification. This
would have detected interface changes (the input files
would be invalid) and eliminated most of the debugging
effort by detecting input file inconsistencies early and
automatically.

Conclusions

The main requirements for the Remote Agent planner
were to generate a plan within the time limit, and that
the plan be correct. The validation approach for the
Remote Agent planner was to invoke the planner on
several test cases, and automatically check the results
for convergence and plan correctness. Correctness was
measured against a set of requirements developed by
the planning team and validated by system and sub-
system engineers. The cases were selected according to
an “all-pairs” selection strategy that exercised all pairs
of input parameter values. The selected values were at
key boundary points and extrema. They were selected
informally, based on the tester’s knowledge of the do-
main model.

The tests focused on mutations of the two baseline
mission profiles (goal sets) we expected to use in op-
erations. This approach reduced the number of test
cases, but was vulnerable to late changes to the base-
line. A better approach would be to exercise the goal
space more completely. There are a number of open re-
search opportunities in this area. Formal coverage met-
rics are sorely needed for planners. Such metrics could
guide the test selection and inform decisions on bal-
ancing risk (coverage) against cost (number of cases).
Clever metrics may also be able to reduce the number of
cases needed for a given level of coverage as compared to
the straightforward metrics used for the Remote Agent
planner. Finally, effectiveness metrics are needed to es-
timate and compare the defect coverage of various test
strategies.

The number of manageable cases could be increased
by reducing the demand for human involvement. Anal-
ysis costs were high because of the need to provide ini-
tial diagnoses for cases where the planner failed to gen-
erate a plan, and the need to review the plan checker’s
output. Changes to the planner interfaces, including
changes to the model, also created an overhead for up-
dating and debugging the test harness. We suggested a
number of ways to mitigate these factors.

Automated diagnosis methods would eliminate one
bottleneck, especially methods for determining why
no plan was generated. Methods for identifying ille-
gal inputs, especially illegal goals and initial states,
would eliminate some of the test-case debugging effort,
as would process improvements for limiting interface
changes.

The Remote Agent was a real-world, mission-critical
planning application. Our experience in validating the
Remote Agent planner raised a number of key issues.
We addressed several of these, but many issues remain
open. As planning systems are increasingly fielded in
critical applications the importance of resolving these
issues grows as well. Hopefully the Remote Agent ex-
perience will spark new research in this important area.



Appears in AIPS 2000 10

Acknowledgments

This paper describes work performed at the Jet Propul-
sion Laboratory, California Institute of Technology, un-
der contract from the National Aeronautics and Space
Administration, and by the NASA Ames Research Cen-
ter. This work would not have been possible without
the efforts of the rest of the Remote Agent Experiment
team and the other two members of the test team, Todd
Turco and Anita Govindjee.

References

Bernard, D.; Dorais, G.; Fry, C.; Gamble, E.; Kanef-
sky, B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak,
P.; Pell, B.; Rajan, K.; Rouquette, N.; Smith, B.; and
Williams, B. 1998. Design of the remote agent exper-
iment for spacecraft autonomy. In Proceedings of the
1998 IEEE Aerospace Conference.

Chien, S. 1998. Static and completion analysis for
knowledge acquisition, validation and maintenance of
planning knowledge bases. International Journal of
Human-Computer Studies 48:499–519.

Cohen, D.; Dalal, S.; Parelius, J.; and Patton, G. 1996.
The combinatorial design approach to automatic test
generation. IEEE Software 13(5):83–89.

Cohen, D.; Dalal, S.; Fredman, M.; and Patton, G.
1997. The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering 23(7):437–444.

Etzioni, O. 1993. Acquiring search control knowledge
via static analysis. Artificial Intelligence 62:255–302.

Feather, M., and Smith., B. 1999. Automatic genera-
tion of test oracles: From pilot studies to applications.
In Proceedings of the Fourteenth International Confer-
ence on Automated Software Engineering (ASE-99),
63–72. Cocoa Beach, FL: IEEE Computer Society.
Best Paper.

Feather, M. 1998. Rapid application of lightweight
formal methods for consistency analysis. IEEE Trans-
actions on Software Engineering 24(11):949–959.

Howe, A. E., and Cohen, P. R. 1995. Understand-
ing planner behavior. Artificial Intelligence 76(2):125–
166.

Knoblock, C. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2).

Muscettola, N.; Smith, B.; Chien, C.; Fry, C.; Rajan,
K.; Mohan, S.; Rabideau, G.; and Yan, D. 1997. On-
board planning for the new millennium deep space one
spacecraft. In Proceedings of the 1997 IEEE Aerospace
Conference, volume 1, 303–318.

Nayak, P.; Bernard, D.; Dorais, G.; Gamble, E.;
Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Rajan, K.; Rouquette, N.; Smith, B.; Taylor, W.; and
Tung, Y. 1999. Validating the ds1 remote agent.
In International Symposium on Artificial Intelligence
Robotics and Automation in Space (ISAIRAS-99).

O’Keefe, R., and O’Leary, D. 1993. Expert system
verification and validation: a survey and tutorial. AI
Review 7:3–42.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and
Smith, B. 1997. Robust periodic planning and execu-
tion for autonomous spacecraft. In Proceedings of the
Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97).

Schoppers, M. 1987. Universal plans for reactive
robots in unpredictable environments. In IJCAI 87.

Williams, B., and Nayak, P. 1996. A model-based ap-
proach to reactive self-configuring systems. In Proceed-
ings of the thirteenth national conference on artificial
intelligence (AAAI-96), 971–978.


