CLEaR: Closed Loop Execution and Recovery
High-Level Onboard Autonomy
for Rover Operations

Forest W. Fisher
Jet Propulsion Laboratory
October 11, 2001

IPN-ISD Technology Program
FY-01 Year-End Review Demonstration

JPL Clearance #01-2374
Demo Overview

- Introduction of Team
- CLARAty
 - Functional Layer
 - Decision Layer
- CLEaR
 - AI Planning & Schedule
 - Task Based Control and Execution
- Rovers
 - R7
 - R8
- Demonstration Environment
- Scenario Overview
- Scenario Script
Introduction of Team

• CLEaR Team
 – Forest Fisher (CLEaR task lead)
 – Tara Estlin (CLARAty DL lead)
 – Dan Gaines
 – Steve Schaffer
 – Caroline Chouinard
 – Darren Mutz (now at UC Santa Barbara)
 – Barbara Englehardt (now at UC Berkeley)

• TDL Collaboration
 – Reid Simmons (CMU)

• CLARAty/Rocky8 Team **
 – * Issa A.D. Nesnas (34)
 – * Richard Petras (34)
 – * Hari Das (34)
 – * Tara Estlin (36)
 – * Darren Mutz (36)
 – * Caroline Chouinard (36)
 – Edward Barlow (34)
 – Dan Helmick (34)
 – Stanley Lippman (Consultant)
 – Ashitey Trebi-Ollennu (35)
 – Paolo Pirjanian (35)
 – Kevin Watson (34)
 – Rich Volpe (34)

* CLARAty team members who worked closely with the CLEaR team
** Note: some of this material was taken directly from the CLARAty year end review material
A Two-Layered Architecture

THE DECISION LAYER:
Reliance on disparate efforts to provide planning, scheduling, and execution – including CLEaR, CASPER, TDL, MDS GEL, CRL.

THE FUNCTIONAL LAYER:
Generalized and reusable software for multiple, differing, rover platforms. This includes packages for: I/O, Motion Control, Manipulation, Mobility, Navigation, Perception, Resource Management, and System Control.

VARIABLE GRANULARITY INTERFACE:
Interface between high- or low-level goals and system objects. Definitions for command/control, status, and resource predictions. Tight coupling through direct object access, including state.

Courtesy of CLARAAty: Issa et al.
Two-layer design:

- **Decision Layer (DL)** provides decision making capabilities such as planning and execution. (High-Level Reasoning)
 - DL sends commands to FL and receives periodic state and resource updates.
 - DL uses declarative model-based design

- **Functional Layer (FL)** provides basic functionality for a robotic system
 - FL uses an object-oriented component-based design

- Components are validated in simulation and on real robotic platforms

CLARAty Architecture

- **Decision Layer** (e.g. CLEaR)
 - Rocky 8 Models/Heuristics

- **Generic Functional Layer**
 - Rocky 8 Specialized Classes & Objects

- **Simulation** & **Hardware Drivers**

- **Connector**
 - Multi-level access Connector

Courtesy of CLARAty: Issa et al.
What is CLEaR?

• CLEaR: Closed Loop Execution and Recovery is:
 – concept for unified planning and execution, and a
 – software implementation of the concept

• Unified Planning and Execution
 – High-Level Reasoning Decision Making (AI Planning)
 • Goal-Based Commanding
 – Reactive Control & Execution
 • Task-Based Control
 – Utilizes/built on CASPER and TDL
 – Balances global long-term reasoning and reactive short-term actions
 • Global reasoning: going to the bank\(^3\) to get money\(^2\) for shopping\(^1\)
 Goal\(^1\): shopping, Precondition\(^2\): have money, Action\(^3\): going to the bank
 • Reactive control: slamming on brakes when child runs in front of car
 – Seeing stop sign up ahead and braking, inform planner of impact

• CLARA\(\text{ty}\) Decision Layer
 – CLEaR is the first instantiation of the CLARA\(\text{ty}\) architecture
Unified Planning and Execution technology performs
- goal-based commanding
- decision making
- execution
- monitoring and
- recovery and/or responsive, reactive behavior

Customers:
- CLARAty task
 - Integrated in ROAMS simulation environment (by CLARAty task)
- Deep Space Station Controller/Common Automation Engine task
 - DSN operations
- CLEaR has been licensed to Lockheed Martin Skunk Works for use on Unmanned Air Vehicles (UAVs)
AI Planning and Scheduling

• Artificial Intelligence Planning
 – The **Selection** and **Sequencing** of actions to achieve a set of desired goals, within the temporal and operational constraints (requirements) of the system.

– Constraints
 • Temporal constraints (time)
 • State constraints (e.g. earth_in_view, day_time…)
 • Resource constraints
 – Use of a system component (e.g. the camera, drive motors…)
 – Use of a consumable item (e.g. memory storage, energy, power…)
 • Flight rules
 • Pre-conditions
AI Planning and Scheduling

- **ASPEN: Automated Scheduling Planning ENvironment**
 - A general-purpose heuristic-based, iterative repair, local search planning and scheduling framework
 - A batch (off-line, without feedback) system for ground based operations or off-line planning
 - Declarative description of operations and system constraints

- **CASPER: Continuous Activity, Scheduling, Planning, Execution and Replanning**
 - A soft, real-time version of ASPEN for use in embedded systems
Task Based Control and Execution

• TDL: Task Description Language (CMU)
 – A C++ pre-compiler of support constructs for aiding in task-based control development
 • Task synchronization, monitoring, error condition responses, looping constructs, conditional constructs, relative and absolute time based execution…
 – A Reactive control and execution framework

• Task Control
 – Procedural (step-by-step) description of a sequence of actions to be taken in order to achieve a task
Rovers

• Rocky 8:
 – MER size rover
 – 6 wheel drive
 – 6 wheel steering
 • Although we only steer with 4 wheels

• Rocky 7:
 – Sojourner size rover
 – 6 wheel drive
 – 2 wheel steering
Demonstration Environment

- High-level autonomy software (CLEaR):
 - C++ code
 - Currently running on a Sun workstation
 - Plan is to move to Linux or VxWorks and physically run onboard
 - Effort has focused on the technology development
 - Communicating with the rover over a wireless LAN
- Low-level autonomy software (Functional Layer)
 - C++ code
 - Running onboard under VxWorks
- Rover power source
 - Rocky 8 – running on internal rechargeable batteries
 - Rocky 7 – tethered power supply (onboard battery lifespan too short)
Scenario Overview

• Plan Generation
• Path-planning to find optimal sequence for visiting science targets
• Global replanning due to projected completion time conflict (resulting from an obstructed path)
• Reactive resolution of an obstructed path
• Replanning due to memory usage conflict
• Replanning due to energy usage conflict
• Science target selection based on target priorities
Full Navigation & Science Scenario

- Unknown obstacles cause obstructed path. Science targets are re-sequenced.
- Goal discarded due to energy resource conflict.
- Unknown obstacle causes navigation s/w to take rover off course.
- Goal discarded due to memory resource conflict.

Legend:
- Global map knowledge (Orbit or decent imagery)
- Local map knowledge
- Science goal target
- Original path
- Actual path
- Deleted path segment
- Deleted Science Target
Future Work

• Develop a scenario more closely aligned with the Mars 07/09 mission
 – We believe that this sort of high-level autonomy can most affectively benefit
 the long-range traverses (over the hill driving) and traverse science
 performed between the primary science target locations (non or minimally
 intrusive science during the traverses)

 – Enhance our unified planning and execution approach/capabilities to focus
 on increasing the Mars 07/09 rover’s ability to perform:
 • Long-Range Traverse
 – Adjusting scheduling of localization activities based on terrain
 – Adjusting obstacle avoidance sensitivity based on terrain
 – Use of updating maps for Path Planning purposes
 • Traverse Science
 – Resource and schedule management
 • Robust Execution
 – Resource and schedule management
 • Do more in a single command cycle
Information

• CLEaR
 • (outdated but will be updated to reflect recent work shortly)
 – Forest.Fisher@jpl.nasa.gov (818) 393 5368

• Artificial Intelligence Planning and Scheduling
 – Steve.Chien@jpl.nasa.gov (818) 393 5320

• CLARAty
 – Issa.Nesnas@jpl.nasa.gov (818) 354 9709

Acknowledgements:

This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Portions of this work were supported by: the Inter-Planetary Network Information Systems Directorate Technology Program, the Automated Reasoning element of the Intelligent Systems Program, and the Mars Technology Program.